用前必读
1,使用输入检查工具(windows版)检查输入数据
2,使用excel存储并调整数据(wps不行),然后拷贝、粘贴到输入框
3,请勿使用特殊符号,例如#,<,>,%,(,),非英文字符等。默认仅支持英文字符(部分模块除外)
4,使用SVG编辑器或AI,inkscape修改文字、字体,图例,处理截断等,参考inkscape实操
5,生信分析项目合作请加管理员微信(页面右下)

人工客服  基因名转换  FC,P转换  常用配色  影响因子 新需求及bug提交  pdf转图片

必需输入
数据较少(粘贴):

数据较多(上传):(tab分割的txt文件,文件名用英文,不能超过10M)


可选输入
图片尺寸
图片宽度:
图片高度:
字体大小
轴说明字体大小:
轴刻度字体大小:
图例标题字体大小:
图例文字字体大小:
变量名字体大小:

颜色(6+使用系统颜色)
颜色1:
颜色2:
颜色3:
颜色4:
颜色5:
颜色6:

输入数据是否转置



样品点大小:

是否绘制椭圆
椭圆代表分组按默认68%的置信区间加的核心区域
注意:若有分组仅包含2个样品,则不能画椭圆


是否绘制相关环(即圆,代表相关性)


字体


主成分分析(PCA)

简介
主成分分析(Principal components analysis,PCA)利用正交变换对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值,这些不相关变量称为主成分(Principal Components)。PCA是最简单的以特征量分析多元统计分布的方法。通常情况下,这种运算可以被看作是揭露数据的内部结构,从而更好的解释数据的变量的方法。
数据说明
矩阵形式,第一行为组名,第二行为样品名,其余行为数据。图中坐标轴PC1和PC2为第一、第二主成分(即潜在变量对差异的解释率);点代表样品,不同颜色表示不同分组; 椭圆代表分组按默认68%的置信区间加的核心区域,便于观察组间是否分开;箭头代表原始变量,其方向代表原始变量与主成分的相关性,长度代表原始数据对主成分的贡献度
论文例子
https://github.com/vqv/ggbiplot
输入 示例数据
输出

1)如何作图?
1,数据放在excel里边,2,根据示例的行或者列,调整为示例样式;3,将调整后的数据拷贝粘贴到输入框;4,选择参数;5,提交出图
2)为什么不出图?
1,输入检查工具初步检查输入,根据提示修正;2,观看输入框上面的B站视频介绍;3,并仔细阅读右侧说明,示例数据;4,提交人工客服处理
3)如何引用?
建议直接写网址。3400+篇google学术,2700+篇知网学术
正式引用:Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, Wu S, Wang Y.SRplot: A free online platform for data visualization and graphing. PLoS One. 2023 Nov 9;18(11):e0294236. doi: 10.1371/journal.pone.0294236. PMID: 37943830.
方法章节:Heatmap was plotted by https://www.bioinformatics.com.cn (last accessed on 20 May 2024), an online platform for data analysis and visualization.
致谢章节:We thank Mingjie Chen (Shanghai NewCore Biotechnology Co., Ltd.) for providing data analysis and visualization support.
4)交流群/公众号