主成分分析(PCA)
简介
主成分分析(Principal components analysis,PCA)利用正交变换对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值,这些不相关变量称为主成分(Principal Components)。PCA是最简单的以特征量分析多元统计分布的方法。通常情况下,这种运算可以被看作是揭露数据的内部结构,从而更好的解释数据的变量的方法。
数据说明
行为特征(基因,代谢物,蛋白等),列为样品。其中第一列是样品名(不能有重复),第2列为组名(最多30组),其余为数据。
图中坐标轴PC1和PC2为第一、第二主成分(即潜在变量对差异的解释率);点代表样品,不同颜色表示不同分组; 椭圆代表分组按默认68%的置信区间加的核心区域,便于观察组间是否分开;箭头代表原始变量,其方向代表原始变量与主成分的相关性,长度代表原始数据对主成分的贡献度
论文例子
https://github.com/vqv/ggbiplot
如何引用?
建议直接写网址。4800+篇
google学术,3900+篇
知网学术
正式引用:Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, Wu S, Wang Y.
SRplot: A free online platform for data visualization and graphing. PLoS One. 2023 Nov 9;18(11):e0294236. doi: 10.1371/journal.pone.0294236. PMID: 37943830.
方法章节:Heatmap was plotted by https://www.bioinformatics.com.cn (last accessed on 10 Dec 2024), an online platform for data analysis and visualization.
致谢章节:We thank Mingjie Chen (Shanghai NewCore Biotechnology Co., Ltd.) for providing data analysis and visualization support.